Multiresolution Approach to Biomedical Image Segmentation with Statistical Models of Appearance
نویسندگان
چکیده
Structural variability present in biomedical images is known to aggravate the segmentation process. Statistical models of appearance proved successful in exploiting the structural variability information in the learning set to segment a previously unseen medical image more reliably. In this paper we show that biomedical image segmentation with statistical models of appearance can be improved in terms of accuracy and efficiency by a multiresolution approach. We outline two different multiresolution approaches. The first demonstrates a straightforward extension of the original statistical model and uses a pyramid of statistical models to segment the input image on various resolution levels. The second applies the idea of direct coefficient propagation through the Gaussian image pyramid and uses only one statistical model to perform the multiresolution segmentation in a much simpler manner. Experimental results illustrate the scale of improvement achieved by using the multiresolution approaches described. Possible further improvements are discussed at the end.
منابع مشابه
An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...
متن کاملA Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models
Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis. Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models...
متن کاملAssessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation
Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...
متن کاملA Multiresolution PDE-Based Deformable Surface for Medical Imaging Applications
We recently developed a multiresolution PDE-based deformable surface whose deformation behavior is governed by partial differential equations (PDEs) such as the weighted minimal surface flow. Comparing with the level-set approach, our new model has better control of the mesh quality and model resolution, and is much simpler to implement since all the computations are local. The new deformable m...
متن کاملMULTIRESOLUTION IMAGE PROCESSING TECHNIQUES WITH APPLICATIONS IN TEXTURE SEGMENTATION AND NONLINEAR FILTERING A Thesis
Comer, Mary L. Ph.D., Purdue University, December 1995. Multiresolution Image Processing Techniques with Applications in Texture Segmentation and Nonlinear Filtering. Major Professor: Edward J. Delp. We present a new algorithm for segmentation of textured images using a multiresolution Bayesian approach. The algorithm uses a multiresolution Gaussian autoregressive (MGAR) model for the pyramid r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003